题目内容
如图,为的切线,为切点,于点,交于,平分.求的度数.
60°
分析:由于AM是切线,BD⊥AM,易得∠OAM=∠BDM=90°,从而可证OA∥BD,那么就有∠AOC=∠BCO,OC是∠AOB角平分线,易得∠AOC=∠BOC,可得∠BOC=∠BCO,又OB=OC,从而可证明△OBC是等边三角形,从而可求∠B。
解答:
∵AM是切线,
∴OA⊥AM,
∴∠OAM=90°,
又∵BD⊥AM,
∴∠BDM=90°,
∴∠OAM=∠BDM,
∴AO∥BD,
∴∠AOC=∠BCO,
∵OC是∠AOB平分线,
∴∠AOC=∠BOC,
∴∠BOC=∠BCO,
又∵OB=OC,
∴∠OBC=∠OCB,
∴△OBC为等边三角形,
∴∠B=60°。
点评:本题考查了切线的性质、平行线的判定和性质、角平分线的概念,难度一般,解答本题的关键是证明OA∥BD。
练习册系列答案
相关题目