题目内容
【题目】如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度数.
【答案】(1)见解析;(2)∠ADC的度数为37°.
【解析】
试题
(1)根据AB,CD是直径,可得出∠ADB=∠CBD=90°,再根据HL定理得出△ABD≌△CDB;
(2)由BE是切线,得AB⊥BE,根据∠DBE=37°,得∠BAD,由OA=OD,得出∠ADC的度数.
试题解析:
(1)证明:∵AB,CD是直径,
∴∠ADB=∠CBD=90°,
在△ABD和△CDB中,
,
∴△ABD和△CDB(HL);
(2)解:∵BE是切线,
∴AB⊥BE,
∴∠ABE=90°,
∵∠DBE=37°,
∴∠ABD=53°,
∵OA=OD,
∴∠BAD=∠ODA=90°﹣53°=37°,
∴∠ADC的度数为37°.
练习册系列答案
相关题目