题目内容
【题目】如图1,在矩形ABCD中,AB=5,BC=4,E是BC边上一点,连接DE,将矩形ABCD沿DE折叠,顶点C恰好落在AB边上点F处,延长DE交AB的延长线于点G.
(1)求线段BE的长;
(2)连接CG,求证:四边形CDFG是菱形;
(3)如图2,P,Q分别是线段DG,CG上的动点(与端点不重合),且∠CPQ=∠CDP,是否存在这样的点P,使△CPQ是等腰三角形?若存在,请直接写出DP的值,若不存在,请说明理由.
【答案】(1);(2)见解析;(3)存在,或
【解析】
(1)设,由矩形的性质,折叠的性质和勾股定理得出BF,EF的值,然后在中利用勾股定理即可求解;
(2)由矩形的性质得出,然后根据平行线分线段成比例可求出BG的长度,进而可求出FG的长度,则可证明结论;
(3)分两种情况:和,分别利用等腰三角形的性质和相似三角形的判定及性质得出PG的长度,然后利用勾股定理求出DG的长度,最后利用即可求解.
(1)∵四边形ABCD是矩形,
∴ .
由折叠的性质可知, ,
,
,
.
设,则 ,
,
,
解得 ,
;
(2)证明:,
.
,
,
,
,
,
.
,
∴四边形CDFG是平行四边形.
∵,
∴四边形CDFG是菱形;
(3)存在,理由如下:
①若,
∵四边形CDFG是菱形,
∴ ,
.
,
.
,
,
.
,
.
,
,
;
②若,
过点P作交CG于点H,
,
.
,
,
.
,
.
∵四边形CDFG是菱形,
∴ .
,
,
,
,
,
,
综上所述,DP的值为或.
【题目】为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.
a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)
b.乙部门成绩如下:
40 52 70 70 71 73 77 78 80 81
82 82 82 82 83 83 83 86 91 94
c.甲、乙两部门成绩的平均数、方差、中位数如下:
平均数 | 方差 | 中位数 | |
甲 | 79.6 | 36.84 | 78.5 |
乙 | 77 | 147.2 | m |
d.近五年该单位参赛员工进入复赛的出线成绩如下:
2014年 | 2015年 | 2016年 | 2017年 | 2018年 | |
出线成绩(百分制) | 79 | 81 | 80 | 81 | 82 |
根据以上信息,回答下列问题:
(1)写出表中m的值;
(2)可以推断出选择 部门参赛更好,理由为 ;
(3)预估(2)中部门今年参赛进入复赛的人数为 .
【题目】生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的天数据,整理后绘制成统计表进行分析.
日均可回收物回收量(千吨) | 合计 | |||||
频数 | 1 | 2 | 3 | |||
频率 | 0.05 | 0.10 | 0.15 | 1 |
表中组的频率满足.
下面有四个推断:
①表中的值为20;
②表中的值可以为7;
③这天的日均可回收物回收量的中位数在组;
④这天的日均可回收物回收量的平均数不低于3.
所有合理推断的序号是( )
A.①②B.①③C.②③④D.①③④