题目内容
【题目】如图,点E是△ABC的内心,线段AE的延长线交△ABC的外接圆于点D.
(1)求证:ED=BD;
(2)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长.
【答案】(1)证明见解析;(2)3.
【解析】
试题分析:(1)根据点E是△ABC的内心得出∠BAD=∠CAD,∠ABE=∠CBE,求出∠BED=∠EBD,即可得出答案;
(2)求出BC为△ABC的直径,求出BD=DC,解直角三角形求出即可.
试题解析:(1)∵点E是△ABC的内心,
∴∠BAD=∠CAD,∠ABE=∠CBE,
∵∠CBD=∠CAD,
∴∠BAD=∠CBD,
∴∠BED=∠ABE+∠BAD,
∴∠ABE=∠CBE,∠BAD=∠CAD=∠CBD,
∵∠EBD=∠CBE+∠CBD,
∴∠BED=∠EBD,
∴ED=BD;
(2)连接CD,
∵∠BAC=90°,
∴BC是⊙O的直径,
∴∠BDC=90°,
∵⊙O的直径=6,
∴BC=6,
∵E为△ABC的内切圆的圆心,
∴∠BAD=∠CAD,
∴BD=DC,
∴BD=DC=BC=3.
练习册系列答案
相关题目