题目内容
【题目】二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a-b+c>0;⑤若a+bx1=a+bx2且x1≠x2,则x1+x2=2,其中正确的有( )
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
【答案】D
【解析】
根据抛物线开口方向得a<0,由抛物线对称轴为直线x1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点位置得到c>0,所以abc<0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;根据抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b=0,即x1+x2,然后把b=﹣2a代入计算得到x1+x2=2.
∵抛物线开口向下,∴a<0.
∵抛物线对称轴为直线x1,∴b=﹣2a>0,即2a+b=0,所以②正确;
∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;
∵抛物线对称轴为直线x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;
∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;
∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2.
∵b=﹣2a,∴x1+x2=2,所以⑤正确.
故选D.
【题目】某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:
每个商品的售价x(元) | … | 30 | 40 | 50 | … |
每天的销售量y(个) | 100 | 80 | 60 | … |
(1)求y与x之间的函数表达式;
(2)设商场每天获得的总利润为w(元),求w与x之间的函数表达式;
(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?