题目内容
【题目】某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.
【答案】雕像AB的高度为95尺.
【解析】
试题分析:过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,求得EG的长,即可得BF的长;在Rt△BEF中,可得EF=BF,在Rt△AEF中,∠AEF=60°,设AB=x,根据锐角三角函数求得x即可.
试题解析:如图,
过点E作EF⊥AC,EG⊥CD,
在Rt△DEG中,∵DE=1620,∠D=30°,
∴EG=DEsin∠D=1620×=810,
∵BC=857.5,CF=EG,
∴BF=BC﹣CF=47.5,
在Rt△BEF中,tan∠BEF=,
∴EF=BF,
在Rt△AEF中,∠AEF=60°,设AB=x,
∵tan∠AEF=,
∴AF=EF×tan∠AEF,
∴x+47.5=3×47.5,
∴x=95,
答:雕像AB的高度为95尺.
【题目】国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:
获奖等次 | 频数 | 频率 |
一等奖 | 10 | 0.05 |
二等奖 | 20 | 0.10 |
三等奖 | 30 | b |
优胜奖 | a | 0.30 |
鼓励奖 | 80 | 0.40 |
请根据所给信息,解答下列问题:
(1)a= ,b= ,且补全频数分布直方图;
(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.