题目内容

【题目】如图,正方形ABCD和正方形CEFG边长分别为ab,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;BEDG;DE2+BG2=2a2+2b2,其中正确结论有( )

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.

详解:①∵四边形ABCD和EFGC都为正方形,

∴CB=CD,CE=CG,∠BCD=∠ECG=90°,

∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.

BCE和DCG中,CB=CD,∠BCE=∠DCG,CE=CG,

∴△BCE≌△DCG,

∴BE=DG,

故结论正确.

如图所示,设BE交DC于点M,交DG于点O.

可知,△BCE≌△DCG,

∴∠CBE=∠CDG,即∠CBM=∠MDO.

∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,

∴∠DOM=∠MCB=90°,

∴BE⊥DG.

结论正确.

如图所示,连接BD、EG,

知,BE⊥DG,

则在Rt△ODE中,DE2=OD2+OE2

Rt△BOG中,BG2=OG2+OB2

Rt△OBD中,BD2=OD2+OB2

Rt△OEG中,EG2=OE2+OG2

∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.

Rt△BCD中,BD2=BC2+CD2=2a2

Rt△CEG中,EG2=CG2+CE2=2b2

∴BG2+DE2=2a2+2b2.

结论正确.

故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网