题目内容
【题目】如图,E,F分别是正方形ABCD的边CD、AD上的点.且CE=DF,AE、BF相交于点O,下列结论:①AE=BF,②AE⊥BF,③AO=OE,④S△AOB=S四边形DEOF中,错误的有 . (只填序号)
【答案】③
【解析】解:在正方形ABCD中,∠BAF=∠D=90°,AB=AD=CD,∵CE=DF,
∴AD﹣DF=CD﹣CE,
即AF=DE,
在△ABF和△DAE中, ,
∴△ABF≌△DAE(SAS),
∴AE=BF,故①正确;
∠ABF=∠DAE,
∵∠DAE+∠BAO=90°,
∴∠ABF+∠BAO=90°,
在△ABO中,∠AOB=180°﹣(∠ABF+∠BAO)=180°﹣90°=90°,
∴AE⊥BF,故②正确;
假设AO=OE,
∵AE⊥BF(已证),
∴AB=BE(线段垂直平分线上的点到线段两端点的距离相等),
∵在Rt△BCE中,BE>BC,
∴AB>BC,这与正方形的边长AB=BC相矛盾,
所以,假设不成立,AO≠OE,故③错误;
∵△ABF≌△DAE,
∴S△ABF=S△DAE ,
∴S△ABF﹣S△AOF=S△DAE﹣S△AOF ,
即S△AOB=S四边形DEOF , 故④正确;
综上所述,错误的有③.
所以答案是:③.
【考点精析】利用正方形的性质对题目进行判断即可得到答案,需要熟知正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
练习册系列答案
相关题目