题目内容
【题目】在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下: 甲:79,86,82,85,83
乙:88,79,90,81,72.
回答下列问题:
(1)甲成绩的平均数是 , 乙成绩的平均数是;
(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;
(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.
【答案】
(1)83;82
(2)解:选拔甲参加比赛更合适,理由如下:
∵ > ,且S甲2<S乙2,
∴甲的平均成绩高于乙,且甲的成绩更稳定,
故选拔甲参加比赛更合适
(3)解:列表如下:
79 | 86 | 82 | 85 | 83 | |
88 | 88,79 | 88,86 | 88,82 | 88,85 | 88,83 |
79 | 79,79 | 79,86 | 79,82 | 79,85 | 79,83 |
90 | 90,79 | 90,86 | 90,82 | 90,85 | 90,83 |
81 | 81,79 | 81,86 | 81,82 | 81,85 | 81,83 |
72 | 72,79 | 72,86 | 72,82 | 72,85 | 72,83 |
由表格可知,所有等可能结果共有25种,其中两个人的成绩都大于80分有12种,
∴抽到的两个人的成绩都大于80分的概率为
【解析】解:(1) = =83(分), = =82(分);
所以答案是:(1)83,82.
【考点精析】本题主要考查了列表法与树状图法和算术平均数的相关知识点,需要掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率;总数量÷总份数=平均数.解题关键是根据已知条件确定总数量以及与它相对应的总份数才能正确解答此题.
练习册系列答案
相关题目