题目内容
【题目】如图,是⊙的直径,是弦,,于.
(1)求证:是⊙的切线:
(2)若,求的值.
【答案】(1)详见解析;(2)
【解析】
(1)过O作OE⊥AC交AC于E,通过,得到∠ACD=∠COE,最后可得∠DCO=90°;
(2)由(1)易知∠OAC=∠CAD,所以只需在Rt△ADC中求出cos∠CAD即可.
(1)证明: 过O作OE⊥AC交AC于E,如图所示:
∵OA=OC,OE⊥AC
∴
∵
∴∠ACD=∠COE
∵∠ACO+∠COE=90°
∴∠ACO+∠ACD=90°=∠OCD
∴CD为圆O的切线.
(2)解:由(1)知:∠ACO+∠ACD=90°
∵AD⊥CD
∴∠ACD+∠CAD=90°
∴∠CAD=∠OCA=∠OAC
过A作AF⊥OC,如图示:
∵AB=10
∴OA=5
∵AD=2
∴OF=3
∴AF==CD
∴AC=
∴cos∠DAC==cos∠OAC
练习册系列答案
相关题目
【题目】某校同学组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 | ||||||||||
乙 |
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是分2,则成绩较为整齐的是 队.