题目内容
【题目】如图,已知抛物线经过点,与轴交于两点,为顶点,为抛物线上一动点(与点不重合)
求该抛物线的解析式;
当点在直线的下方运动时,求的面积的最大值;
该抛物线上是否存在点,使?若存在,求出所有点的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)点的坐标为或
【解析】
(1)将点A、B、C坐标代入二次函数表达式,即可求解;
(2)利用S△PBC=PG(xCxB),即可求解;
(3)分点P在直线BC下方、上方两种情况,分别求解即可.
解:抛物线过两点
可设为
又过点
解析式为;
,
设直线BC的解析式为y=kx+b
把B,C坐标代入得
解得
可得直线的解析式为:
过点作轴的垂线,交于点
设点的横坐标为
则点的坐标为,点的坐标为
,.
当时,的面积最大,最大值为;
存在.
∵=
∴顶点的坐标为,
连接
则
是直角三角形,且.
当点在直线下方时,
设的中点为
则,
且点为直线与抛物线的交点(不与点重合)
设直线的表达式为y=px+q
把B,H的坐标代入得
解得
∴直线的表达式为
令,
解得(舍去)或
此时的坐标为
当点在直线上方时,.
设直线CD的解析式为y=mx+n
把C,D的坐标代入得
解得
∴直线的表达式为,
则可设直线的表达式为
将点代入解得
故直线的表达式为.
令,
解得或
此时点的坐标为
综上所述,点的坐标为或.
【题目】甲乙两人依次测量同一圆柱体工件的横截面直径(单位:),测得的数据分别如表1、表2.
表1:甲的测量数据
测量数据 | 9.8 | 9.9 | 10 | 10.1 | 10.3 |
频数 | 1 | 3 | 3 | 2 | 1 |
表2:乙的测量数据
测量数据 | 9.7 | 9.8 | 10 | 10.1 | 10.3 |
频数 | 1 | 2 | 3 | 2 | 2 |
(1)如果在这些测量数据中选择一个数据作为工件直径的估计值,应该是那个数据?请说明理由.
(2)如果甲再测量一次,求他测量出的数据恰好是估计值的概率;
(3)请直接判断甲乙两人谁的测量技术更好______(填甲或乙),你选择的统计量是_______.