题目内容
【题目】如图,四边形ABCD是⊙O的内接四边形,BC是⊙O的直径,OE⊥BC交AB于点E,若BE=2AE,则∠ADC =_________°.
【答案】150
【解析】
连接AC,证明△BOE∽△BAC,根据相似三角形的性质得到x、r的关系,根据余弦的定义求出∠B,根据圆内接四边形的性质计算,得到答案.
解:连接AC,
设⊙O的半径为r,AE=a,则BE=2a,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵OE⊥BC,
∴∠BOE=90°,
∴∠BOE=∠BAC,又∠B=∠B,
∴△BOE∽△BAC,
∴,即,
整理得,r=x,
∴cosB=,
∴∠B=30°,
∵四边形ABCD是⊙O的内接四边形,
∴∠ADC=180°-∠B=150°,
故答案为:150.
【题目】某养殖场计划今年养殖无公害标准化龙虾和鲤鱼,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位:千元/吨)
品种 | 先期投资 | 养殖期间投资 | 产值 |
鲤鱼 | 9 | 3 | 30 |
龙虾 | 4 | 10 | 20 |
养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设鲤鱼种苗的投放量为x吨.
(1)求x的取值范围;
(2)设这两个品种产出后的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?
【题目】2020年3月“停课不停学”期间,某校采用简单随机抽样的方式调查本校学生参加第一天线上学习的时长,将收集到的数据制成不完整的频数分布表和扇形图,如下所示:
组别 | 学习时长(分钟) | 频数(人) |
第1组 | x≤40 | 3 |
第2组 | 40<x≤60 | 6 |
第3组 | 60<x≤80 | m |
第4组 | 80<x≤100 | 18 |
第5组 | 100<x≤120 | 14 |
(1)求m,n的值;
(2)学校有学生2400人,学校决定安排老师给““线上学习时长”在x≤60分钟范围内的学生打电话了解情况,请你根据样本估计学校学生“线上学习时长”在x≤60分钟范围内的学生人数.