题目内容

【题目】如图,在平面直角坐标系中,坐标原点O是正方形OABC的一个顶点,已知点B坐标为(1,7),过点P(a,0)(a>0)作PE⊥x轴,与边OA交于点E(异于点O、A),将四边形ABCE沿CE翻折,点A′、B′分别是点A、B的对应点,若点A′恰好落在直线PE上,则a的值等于(
A.
B.
C.2
D.3

【答案】C
【解析】解:当点A′恰好落在直线PE上,如图所示, 连接OB、AC,交于点D,过点D、A作x轴的垂线,垂足分别为Q、N,设CB′交x轴于M,则CM∥QD∥AN,
∵四边形OABC是正方形,
∴OD=BD,OB⊥AC,
∵O(0,0),B(1,7),
∴D( ),即DQ=
由勾股定理得:OB= = =5
∵△ABO是等腰直角三角形,
∴AB=AO=5,
∵DQ是梯形CMNA的中位线,
∴CM+AN=2DQ=7,
∵∠COA=90°,
∴∠COM+∠AON=90°,
∵∠CMO=90°,
∴∠COM+∠MCO=90°,
∴∠AON=∠MCO,
∵四边形OABC是正方形,
∴OA=OC,
∵∠CMO=∠ONA=90°,
∴△CMO≌△ONA,
∴ON=CM,
∴ON+AN=7,
设AN=x,则ON=7﹣x,
在Rt△AON中,由勾股定理得:x2+(7﹣x)2=52
解得:x=3或4,
当x=4时,CM=3,
此时点B在第二象限,不符合题意,
∴x=3,
∴OM=3,
∵A′B′=PM=5,
∴OP=a=2,
故选C.

【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形,以及对翻折变换(折叠问题)的理解,了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网