题目内容
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)+=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.
(1)求点C,D的坐标及四边形ABDC的面积.
(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=2S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由;
(3)点P是直线BD上的一个动点,连接PA,PO,当点P在直线BD上移动时(不与B,D重合)直接写出∠BAP,∠DOP,∠APO之间满足 的数量关系.
【答案】(1)C(1,0),D(2,0),S四边形ABDC=6;(2) M(0,8)或(0,8);(3) ①当点P在线段BD上移动时,∠APO=∠DOP+∠BAP②当点P在DB的延长线上时,∠DOP=∠BAP+∠APO;③当点P在BD的延长线上时,∠BAP=∠DOP+∠APO.
【解析】
(1)先由非负数性质求出a=2,b=4,再根据平移规律,得出点C,D的坐标,然后根据四边形ABDC的面积=AB×OA即可求解;
(2)存在.设M坐标为(0,m),根据S△PAB=S四边形ABDC,列出方程求出m的值,即可确定M点坐标;
(3)分三种情况讨论,过P点作PE∥AB交OC与E点,根据平行线的性质即可求解.
(1)∵(a﹣2)+=0,
∴a﹣2=0,b-3=0
∴a=2,b=3,
∴A(0,2),B(3,2),AB=3,OA=2
∵点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,
∴C(1,0),D(2,0),CD=3
∴S四边形ABDC=AB×OA=3×2=6;
(2)在y轴上存在一点M,使S△MCD=S四边形ABCD.设M坐标为(0,m).
∵S△MCD=2S四边形ABDC,
∴×3|m|=12,
∴|m|=8,
解得m=±8.
∴M(0,8)或(0,8);
(3)①当点P在线段BD上移动时,∠APO=∠DOP+∠BAP
理由如下:
过点P作PE∥AB交OA于E.
∵CD由AB平移得到,则CD∥AB,
∴PE∥CD∥AB,
∴∠BAP=∠APE,∠DOP=∠OPE,
∴∠BAP+∠DOP=∠APE+∠OPE=∠APO,
②当点P在DB的延长线上时,∠DOP=∠BAP+∠APO;
理由如下:
过点P作PE∥AB交OA于E.
∵CD由AB平移得到,则CD∥AB,
∴PE∥CD∥AB,
∴∠BAP=∠APE,∠DOP=∠OPE,
∴∠BAP+∠APO=∠APE+∠APO=∠OPE =∠DOP,
③当点P在BD的延长线上时,∠BAP=∠DOP+∠APO.
理由如下:
过点P作PE∥AB交OA于E.
∵CD由AB平移得到,则CD∥AB,
∴PE∥CD∥AB,
∴∠BAP=∠APE,∠DOP=∠OPE,
∴∠DOP+∠APO=∠OPE+∠APO=∠APE =∠BAP.