题目内容
【题目】如图,中,,是上一点,于点,是的中点,于点,与交于点,若,平分,连结,.
(1)求证:;
(2)求证:.
(3)若,判定四边形是否为菱形,并说明理由.
【答案】(1)见解析;(2)证明见解析;(3)四边形AEGF是菱形,证明见解析.
【解析】
(1)依据条件得出∠C=∠DHG=90°,∠CGE=∠GED,依据F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(注:本小题也可以通过证明四边形ECGH为矩形得出结论)
(2)过点G作GP⊥AB于P,判定△CAG≌△PAG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△DPG,依据EC=PD,即可得出AD=AP+PD=AC+EC;
(3)依据∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AEGF是平行四边形,即可得到四边形AEGF是菱形.
解:(1)∵AF=FG,
∴∠FAG=∠FGA,
∵AG平分∠CAB,
∴∠CAG=∠FAG,
∴∠CAG=∠FGA,
∴AC∥FG,
∵DE⊥AC,
∴FG⊥DE,
∵FG⊥BC,
∴DE∥BC,
∴AC⊥BC,
∴∠C=∠DHG=90°,∠CGE=∠GED,
∵F是AD的中点,FG∥AE,
∴H是ED的中点,
∴FG是线段ED的垂直平分线,
∴GE=GD,∠GDE=∠GED,
∴∠CGE=∠GDE,
∴△ECG≌△GHD;
(2)证明:过点G作GP⊥AB于P,
∴GC=GP,而AG=AG,
∴△CAG≌△PAG,
∴AC=AP,
由(1)可得EG=DG,
∴Rt△ECG≌Rt△DPG,
∴EC=PD,
∴AD=AP+PD=AC+EC;
(3)四边形AEGF是菱形,
证明:∵∠B=30°,
∴∠ADE=30°,
∴AE=AD,
∴AE=AF=FG,
由(1)得AE∥FG,
∴四边形AEGF是平行四边形,
∴四边形AEGF是菱形.