题目内容
以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连结BE、CF,
(1)试探索BE和CF长度的关系?并证明;
(2)你能找到哪两个图形可以通过旋转而互相得到,并指出旋转中心和旋转角。
(1)试探索BE和CF长度的关系?并证明;
(2)你能找到哪两个图形可以通过旋转而互相得到,并指出旋转中心和旋转角。
(1)BE=CF;(2)△FAC与△BAE,旋转中心为点A、旋转角为90°
试题分析:(1)由正方形ACDE和正方形ABGF可得AF=AB, AE=AC,∠FAB=∠EAC=90°,即可得到∠FAC=∠BAE,从而证得△FAC≌△BAE,结论得证;
(2)由(1)可得△FAC≌△BAE,再结合旋转的定义即可得到结果.
(1)∵正方形ABGF,正方形ACDE,
∴AF=AB, AE=AC,∠FAB=∠EAC=90°,
∵∠FAC=∠FAB+∠BAC,
∠BAE=∠EAC+∠BAC,
∴∠FAC=∠BAE,
∴△FAC≌△BAE,
∴BE=CF;
(2)由(1)知,△FAC≌△BAE,
故△FAC和△BAE可以通过旋转而得到彼此,
其旋转中心为点A,旋转角为90°.
点评:解答本题的关键是熟练掌握正方形的四条边相等,四个角均是直角;同时熟记旋转的定义:在平面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角.
练习册系列答案
相关题目