题目内容

将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形;…;如此下去,则第2014个图中共有正方形的个数为(  )
A、2014B、2017C、6040D、6044
考点:规律型:图形的变化类
专题:
分析:观察图形可知,每剪开一次多出3个正方形,然后写出前4个图形中正方形的个数,再根据此规律写出第n个图形中的正方形的个数的表达式,再代入2014求得问题即可.
解答:解:第1个图形有正方形1个,
第2个图形有正方形4个,
第3个图形有正方形7个,
第4个图形有正方形10个,
…,
第n个图形有正方形(3n-2)个.
则第2014个图中共有正方形的个数为3×2014-2=6040.
故选:C.
点评:此题考查图形的变化规律,通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网