题目内容
【题目】为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.
(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?
(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.
(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?
【答案】
(1)解:设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,
,
解得,
即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;
(2)解:设购买A型污水处理设备a台,则购买B型污水处理设备(20﹣a)台,
则 ,
解得,12.5≤x≤15,
第一种方案:当a=13时,20﹣a=7,即购买A型污水处理设备13台,购买B型污水处理设备7台;
第二种方案:当a=14时,20﹣a=6,即购买A型污水处理设备14台,购买B型污水处理设备6台;
第三种方案;当a=15时,20﹣a=5,即购买A型污水处理设备15台,购买B型污水处理设备5台
(3)解:如果我是厂长,从节约资金的角度考虑,我会选择第一种方案,即购买A型污水处理设备13台,购买B型污水处理设备7台;
因为第一种方案所需资金:13×12+7×10=226万元;
第二种方案所需资金:14×12+6×10=228万元;
第三种方案所需资金:15×12+5×10=230万元;
∵226<228<230,
∴选择第一种方案所需资金最少,最少是226万元
【解析】(1)根据2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨,可以列出相应的二元一次方程组,从而解答本题;(2)、(3)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.
【考点精析】解答此题的关键在于理解一元一次不等式组的应用的相关知识,掌握1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案.