题目内容
【题目】在平面直角坐标系xOy中,若点P和点关于x轴对称,点和点关于直线l对称,则称点是点P关于x轴,直线l的二次对称点.
(1)如图1,点A(0,-1).
①若点B是点A关于x轴,直线:x=2的二次对称点,则点B的坐标为 ;
②点C (-4,1)是点A关于x轴,直线:x=a的二次对称点,则a的值为 ;
③点D(-1,0)是点A关于x轴,直线的二次对称点,则直线的表达式为 ;
(2)如图2,O的半径为2.若O上存在点M,使得点M′是点M关于x轴,直线:x = b的二次对称点,且点M′在射线(x≥0)上,b的取值范围是 ;
(3)E(0,t)是y轴上的动点,E的半径为2,若E上存在点N,使得点N′是点N关于x轴,直线:的二次对称点,且点N′在x轴上,求t的取值范围.
【答案】(1)①(4,1),②-2,③y =- x;(2)b的取值范围是-1≤b≤;(3)-4≤t≤4
【解析】
(1)①根据题目中二次对称点的定义,可以求得点B的坐标;
②根据题目中二次对称点的定义,可以求得a的值;
③根据题目中二次对称点的定义,可以求得直线l3的表达式;
(2)根据题意可以画出相应的图形,利用分类讨论的方法即可解答本题;
(3)根据题意和对称的二次对称点的定义,根据题目中的图形,可以求得t的取值范围,本题得以解决.
解:(1)① 点B的坐标为 (4,1)
② a的值为-2
③直线l3的表达式为y =- x
(2)如图2,
设O与x轴的两个交点为(-2,0),(2,0),
与射线 (x≥0)的交点为,则的坐标为(1,).
关于x轴的对称点为.
当点M在的位置时,b=-1,
当点M在的位置时,b=1,
当点M在的位置时,b=1,
当点M在劣弧上时(如图3),-1≤b≤1,
当点M在劣弧上时(如图4),b的值比1大,当到劣弧的中点时,达到最大值(如图5),最大值为.综上,b的取值范围是-1≤b≤.
(3)∵x轴和直线关于直线对称,
直线和直线关于x轴对称,
∴E只要与直线和有交点即可.
∴t 的取值范围是:-4≤t≤4
.