题目内容

【题目】如图,在ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于 F,连接BE,F=45°.

(1)求证:四边形ABCD是矩形;(2)AB=14,DE=8,求sinAEB的值.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)因为四边形是平行四边形,所以根据条件证明即可;(2)过点B于点H,在Rt△BCE中,由勾股定理求出,在Rt△AHB中,求出,然后根据定义可求sin∠AEB的值.

试题解析:(1)证明:四边形是平行四边形,

//BC

∠DAF=∠F

∠F=45°

∠DAE=45°1

AF∠BAD的平分线,

四边形是平行四边形,

四边形ABCD是矩形. 2

2)解:过点B于点H,如图.

四边形ABCD是矩形,

AB=CDAD=BC∠DCB=∠D=90°

AB=14DE=8

CE=6

Rt△ADE中,∠DAE=45°

∠DEA=∠DAE=45°

AD==8

BC=8

Rt△BCE中,由勾股定理得

3

Rt△AHB中,∠HAB=45°

4

Rt△BHE中,∠BHE=90°

sin∠AEB=5

练习册系列答案
相关题目

【题目】在前面的学习中,我们通过对同一面积的不同表达和比较,根据图①和图②发现并验证了平方差公式和完全平方公式.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.

请你利用上述方法解决下列问题:

1)请写出图1和图2所表示的代数恒等式

_______ _______

2)现有a×ab×b的正方形纸片和a×b的矩形纸片各若干块,试选用这些纸片(每种纸片至少用一次,每两个纸片之间既不重叠,也无空隙,拼出的图形中必须保留拼图的痕迹),使拼出的矩形面积为为2a2+5ab+2b2,并标出此矩形的长和宽.

(拓展应用)

提出问题:47×4356×5479×71是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?

几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:

1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面.

2)原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,47×43=(40+10)×40+3×7=5×4×100+3×7=2021

用文字表述47×43的速算方法是:十位数字41的和与4相乘,再乘以100,加上个位数字37的积,构成运算结果.

归纳提炼:

两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述)_________

证明上述速算方法的正确性;

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网