题目内容
【题目】如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=3,点M、N分别在线段AC、AB上,将△ANM沿直线M折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为_____.
【答案】1或
【解析】
由△DCM为直角三角形,分两种情况进行讨论:①∠CDM=90°;②∠CMD=90°.分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.
解:分两种情况:
①如图,当∠CDM=90°时,△CDM是直角三角形,
∵在Rt△ABC中,∠B=90°,∠A=60°,AC=3,
,
由折叠可得,∠MDN=∠A=60°,
∴∠BDN=30°,
,
,
∴AN=2BN=1,
∵∠DNB=60°,
∴∠ANM=∠DNM=60°,
∴∠AMN=60°,
∴MN=AN=1;
②如图,当∠CMD=90°时,△CDM是直角三角形,
由题可得,∠CDM=60°,∠A=∠MDN=60°,
∴∠BDN=60°,∠BND=30°,
,
又,
,
过N作NH⊥AM于H,则∠ANH=30°,
,
由折叠可得,∠AMN=∠DMN=45°,
∴△MNH是等腰直角三角形,
,
.
故答案为1或.
【题目】为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.
分数段 | 频数 | 频率 |
74.5~79.5 | 2 | 0.05 |
79.5~84.5 | m | 0.2 |
84.5~89.5 | 12 | 0.3 |
89.5~94.5 | 14 | n |
94.5~99.5 | 4 | 0.1 |
(1)表中m=__________,n=____________;
(2)请在图中补全频数直方图;
(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在_________分数段内;
(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.