题目内容
1、如图,在四边形ABCD中,AB∥CD,AD∥BC,AC,BD相交于O,则图中能够全等的三角形共有( )对.
分析:由平行得到角相等,加上公共边可以得到△ABD≌△CDB,从而得出AB=CD,AD=BC“对顶角相等”就很容易找到全等的三角形:△ACD≌△CAB(SSS),△ABD≌△CDB(SSS),△AOD≌△COB(SAS),△AOB≌△COD(SAS).
解答:解:∵AB∥CD,AD∥BC,
∠ABD=∠CDB,∠ADB=∠CBD,
又BD=DB,
∴△ABD≌△CDB,①
∴AB=CD,AD=BC;
∴△AOD≌△COB(SAS);②
同理可得出△AOB≌△COD(SAS);③
同理可得:△ACD≌△CAB(SSS).④
因此本题共有4对全等三角形.
故选择A.
∠ABD=∠CDB,∠ADB=∠CBD,
又BD=DB,
∴△ABD≌△CDB,①
∴AB=CD,AD=BC;
∴△AOD≌△COB(SAS);②
同理可得出△AOB≌△COD(SAS);③
同理可得:△ACD≌△CAB(SSS).④
因此本题共有4对全等三角形.
故选择A.
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.
练习册系列答案
相关题目