题目内容
【题目】如图,在梯形中,,交边于点.
(1)当点与恰好重合时(如图1),求的长;
(2)问:是否可能使、与都相似?若能,请求出此时的长;若不能,请说明理由(如图2).
【答案】(1)2;(2)AD =2.
【解析】
(1)由∠DCA=∠CAB,∠ADC=∠ACB,证得△ACD∽△ABC,利用相似三角形的对应边成比例,即可求得AD的长;
(2)分别从使△ABE、△CDE与△BCE都相似分析,利用相似三角形的性质,即可求得AD的长.
解:(1)当点E与A重合时,∵CD∥AB,
∴∠DCA=∠CAB,且∠ADC=∠ACB=90°,
∴△ACD∽△ABC,
∴,
∴AC=2,
∴AD=.
(2)若能使△ABE、△CDE与△BCE都相似,
∴∠EBC=∠A=∠D=90°,∠DEC=∠BEC=∠AEB,
∵∠DEC+∠BEC+∠AEB=180,
∴∠DEC=∠BEC=∠AEB=60°.
在Rt△DEC中,tan∠DEC=,
∴DE=.
在Rt△ABE中,tan∠AEB=,
∴EA=,
∴AD=DE+AE=2.
练习册系列答案
相关题目