题目内容

【题目】阅读下列材料:已知实数mn满足(2m2+n2+1)(2m2+n21)=80,试求2m2+n2的值

解:设2m2+n2t,则原方程变为(t+1)(t1)=80,整理得t2180t281,∴t±9因为2m2+n2≥0,所以2m2+n29

上面这种方法称为换元法,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.

根据以上阅读材料内容,解决下列问题,并写出解答过程.

已知实数xy满足(4x2+4y2+3)(4x2+4y23)=27,求x2+y2的值.

【答案】

【解析】

tx2+y2t≥0),将原方程转化为(4t+3)(4t3)=27,求出t的值,即可解答.

解:设tx2+y2t≥0),则原方程转化为(4t+3)(4t3)=27

整理,得

16t2927

所以t2

t≥0

t

x2+y2的值是

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网