题目内容
【题目】如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD的平行线,两线交于点E.
(1)求证:四边形ADBE是矩形;
(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.
【答案】(1)详见解析;(2)8
【解析】
(1)先求出四边形ADBE是平行四边形,根据等腰三角形的性质求出∠ADB=90°,根据矩形的判定得出即可;
(2)根据矩形的性质得出AB=DE=2AO=6,求出BD,根据勾股定理求出AD,根据三角形面积公式求出即可.
(1)证明:∵AE∥BC,BE∥AD,
∴四边形ADBE是平行四边形,
∵AB=AC,AD是BC边的中线,
∴AD⊥BC,
即∠ADB=90°,
∴四边形ADBE为矩形;
(2)解:∵在矩形ADBE中,AO=3,
∴AB=2AO=6,
∵D是BC的中点,
∴DB= BC=4,
∵∠ADB=90°,
∴AD=,
∴△ABC的面积= BCAD=×8×2=8.
练习册系列答案
相关题目