题目内容
【题目】如图所示,在数轴上点A,B,C表示的数分别为﹣2,0,6.点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.
(1)AB= ,BC= ,AC= ;
(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.
①设运动时间为t,请用含有t的算式分别表示出AB,BC,AC;
②在①的条件下,请问:BC﹣AB的值是否随着运动时间t的变化而变化?若变化,请说明理由:若不变,请求其值.
【答案】(1)2,6,8;(2)①3t+2,3t+6,6t+8;②BC﹣AB的值不会随着运动时间t的变化而变化,其值为4
【解析】
(1)根据各个点在数轴上表示的数,求出AB、BC、AC的长,
(2)①用含有t的代数式表示出运动后,点A、B、C所表示的数,进而表示AB、BC、AC,
②根据BC、AB的长,计算BC﹣AB的值,得出结论.
解:(1)AB=|﹣2﹣0|=2,BC=|0﹣6|=6,AC=|﹣2﹣6|=8,
故答案为:2,6,8.
(2)①移动t秒后,点A所表示的数为(﹣2﹣t),点B所表示的数为2t,点C所表示的数为(6+5t),
因此,AB=2t﹣(﹣2﹣t)=3t+2,BC=(6+5t)﹣2t=3t+6,AC=6+5t﹣(﹣2﹣t)=6t+8,
②BC﹣AB=3t+6﹣(3t+2)=4,
答:BC﹣AB的值不会随着运动时间t的变化而变化,其值为4.
【题目】有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:
(1)函数的自变量x的取值范围是 ;
(2)下表是x与y的几组对应值.
... | 1 | 2 | 3 | ... | ||||||||
... | m | ... |
求m的值;
(3)如图,在平面直角坐标系中,已描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,).结合函数的图象,写出该函数的其它性质(写两条即可).