题目内容

【题目】有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:

(1)函数的自变量x的取值范围是

(2)下表是xy的几组对应值.

...

1

2

3

...

...

m

...

m的值;

(3)如图,在平面直角坐标系中,已描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,).结合函数的图象,写出该函数的其它性质(写两条即可).

【答案】(1)x≠0;(2);(3)画图见解析;(4)具体见解析.

【解析】试题分析:(1)由图表可知x≠0;

(2)根据图表可知当x=3时的函数值为m,把x=3代入解析式即可求得;

(3)根据坐标系中的点,用平滑的曲线连接即可;

(4)观察图象即可得出该函数的其他性质.

试题解析:(1)x≠0;

(2)当x=3 时,

(3)注:要用平滑的曲线连接,图象不能与y轴相交;

(4)函数的性质有很多.如:

①当x<0时,y值随着x值的增大而减小;

②该函数没有最大值;

③该函数图象与y轴没有交点.

练习册系列答案
相关题目

【题目】小红在数学课上学习了角的相关知识后,立即对角产生了浓厚的兴趣.她查阅书籍发现两个有趣的概念,三角形中相邻两条边的夹角叫做三角形的内角;三角形一条边的延长线与其邻边的夹角,叫做三角形的外角.小红还了解到三角形的内角和是180°,同时她很容易地证明了三角形外角的性质,即三角形的一个外角等于与它不相邻的两个内角的和.于是,爱思考的小红在想,三角形的内角是否也具有类似的性质呢?三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?

①尝试探究:

(1)如图1,∠1与∠2分别为△ABC的两个外角,试探究∠A与∠1+∠2之间存在怎样的数量关系?为什么?

解:数量关系:∠l+∠2=180°+∠A

理由:∵∠1与∠2分别为△ABC的两个外角

∴∠1=180°-∠3,∠2=180°-∠4

∴∠1+∠2=360°-(∠3+∠4)

∵三角形的内角和为180°

∴∠3+∠4=180°-∠A

∴∠l+∠2=360°-(180°-∠A)=180°+∠A

小红顺利地完成了探究过程,并想考一考同学们,请同学们利用上述结论完成下面的问题.

②初步应用:

(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2-∠C=________;

(3)如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,则∠P与∠A有何数量关系?________________.(直接填答案)

③拓展提升:

(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,则∠P与∠1、∠2有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由.)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网