题目内容
如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按的路径运动,且速度为每秒1㎝,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长。
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按的路径运动,且速度为每秒2㎝,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动。当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
(1)出发2秒后,求△ABP的周长。
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按的路径运动,且速度为每秒2㎝,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动。当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
(1)△ABP的周长(7+)cm。 (4分)
(2)当t为3s或5.4s或6s或6.5s时,△BCP为等腰三角形。(4分)
(3)当t为2秒或6秒时,直线PQ把△ABC的周长分成相等的两部分.
(2)当t为3s或5.4s或6s或6.5s时,△BCP为等腰三角形。(4分)
(3)当t为2秒或6秒时,直线PQ把△ABC的周长分成相等的两部分.
试题分析:(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.
(2)因为AB与CB,由勾股定理得AC="4" 因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.
(3)分类讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,t+2t-3=6;当P点在AB上,Q在AC上,则AC=t-4,AQ=2t-8,t-4+2t-8=6.
点评:此题涉及到了动点,对于初二学生来说是个难点,尤其是第(2)由两种情况,△BCP为等腰三角形,因此给这道题又增加了难度,因此这是一道难题.
练习册系列答案
相关题目