题目内容
【题目】 如图,点O在△ABC的BC边上,⊙O经过点A、C,且与BC相交于点 D.点E是下半圆弧的中点,连接AE交BC于点F,已知AB=BF.
(1)求证:AB是⊙O的切线;
(2)若OC=3,OF=1,求cosB的值.
【答案】(1)证明见解析;(2)
【解析】
(1)根据垂径定理求出∠EOF=90°,根据等腰三角形性质求出∠BAF=∠BFA,∠E=∠OAE,求出∠OAE+∠BAF=90°,根据切线的判定得出即可;
(2)设AB=x,则BF=x,OB=x+1,根据勾股定理求出AB的长,解直角三角形求出即可.
(1)证明:连接OA、OE,
∵点E是下半圆弧的中点,OE过O,
∴OE⊥DC,
∴∠FOE=90°,
∴∠E+∠OFE=90°,
∵OA=OE,AB=BF,
∴∠BAF=∠BFA,∠E=∠OAE,
∵∠AFB=∠OFE,
∴∠OAE+∠BAF=90°,
即OA⊥AB,
∵OA为半径,
∴AB是⊙O的切线;
(2)解:设AB=x,则BF=x,OB=x+1,
∵OA=OC=3,
由勾股定理得:OB2=AB2+OA2,
∴(1+x)2=32+x2,
解得:x=4,
∴cosB=.

【题目】赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,全校同时默写50首古诗词,每正确默写出一首古诗词得2分,结果有500名进入决赛,从这500名的学生中随机抽取50名学生进行成绩分析,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:(最高分98分):
组别 | 成绩x分 | 频数(人数) |
第1组 | 50≤x<60 | 6 |
第2组 | 60≤x<70 | 8 |
第3组 | 70≤x<80 | 14 |
第4组 | 80≤x<90 | a |
第5组 | 90≤x<100 | 10 |
Ⅰ.第3组的具体分数为:70,70,70,72,72,74,74,74,76,76,78,78,78,78
Ⅱ.50人得分平均数、中位数、众数如表:
平均数 | 中位数 | 众数 | |
得分(分) | m | n |
请结合图表数据信息完成下列各题:
(1)填空a= ,m= ;
(2)将频数分布直方图补充完整;
(3)若测试成绩不低于80分为优秀,估计进入决赛的本次测试为的优秀的学生有多少?