题目内容
【题目】已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).
(1)求证无论k为何值,方程总有两个不相等实数根;
(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.
【答案】(1)证明见解析;(2)k≤1;(3)2.
【解析】试题分析:(1)求出方程的判别式△的值,利用配方法得出△>0,根据判别式的意义即可证明;
(2)由于二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,又△=(k﹣5)2﹣4(1﹣k)=(k﹣3)2+12>0,所以抛物线的顶点在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口向上,由此可以得出关于k的不等式组,解不等式组即可求解;
(3)设方程的两个根分别是x1,x2,根据题意得(x1﹣3)(x2﹣3)<0,根据一元二次方程根与系数的关系求得k的取值范围,再进一步求出k的最大整数值.
试题解析:(1)∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,
∴无论k为何值,方程总有两个不相等实数根;
(2)∵二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,
∵二次项系数a=1,
∴抛物线开口方向向上,
∵△=(k﹣3)2+12>0,
∴抛物线与x轴有两个交点,
设抛物线与x轴的交点的横坐标分别为x1,x2,
∴x1+x2=5﹣k>0,x1x2=1﹣k>0,
解得k<1,
即k的取值范围是k<1;
(3)设方程的两个根分别是x1,x2,
根据题意,得(x1﹣3)(x2﹣3)<0,
即x1x2﹣3(x1+x2)+9<0,
又x1+x2=5﹣k,x1x2=1﹣k,
代入得,1﹣k﹣3(5﹣k)+9<0,
解得k<.
则k的最大整数值为2.