题目内容
【题目】某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.
(1)试确定函数关系式y=a(x﹣h)2+k;
(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;
(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?
【答案】
(1)解:根据题意可设:y=a(x﹣4)2﹣16,
当x=10时,y=20,
所以a(10﹣4)2﹣16=20,解得a=1,
所求函数关系式为:y=(x﹣4)2﹣16
(2)解:当x=9时,y=(9﹣4)2﹣16=9,所以前9个月公司累计获得的利润为9万元,
又由题意可知,当x=10时,y=20,而20﹣9=11,
所以10月份一个月内所获得的利润11万元
(3)解:设在前12个月中,第n个月该公司一个月内所获得的利润为s(万元)
则有:s=(n﹣4)2﹣16﹣[(n﹣1﹣4)2﹣16]=2n﹣9,
因为s是关于n的一次函数,且2>0,s随着n的增大而增大,
而n的最大值为12,所以当n=12时,s=15,
所以第12月份该公司一个月内所获得的利润最多,最多利润是15万元
【解析】(1)根据题意此抛物线设为y=a(x﹣4)2﹣16,把x=10,y=20,代入即可求得a的值,把a的值代入抛物线的顶点式中即可;(2) 相邻两个月份的总利润的差即为某也利润;(3)根据前x个月所获得的利润减去前x-1个月内所获得的利润,再减去16即可表示出第x个月内所获得的利润,为关于x的一次函数,且为增函数,得到x去最大12时即可求得最多的利润。