题目内容
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0),直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F.
(1)求抛物线的解析式;
(2)连接AE,求h为何值时,△AEF的面积最大.
(3)已知一定点M(﹣2,0),问:是否存在这样的直线y=h,使△BDM是等腰三角形?若存在,请求出h的值和点D的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2﹣x+6;(2)当h=3时,△AEF的面积最大,最大面积是 .(3)存在,当h=时,点D的坐标为(,);当h=时,点D的坐标为(,).
【解析】
(1)利用待定系数法即可解决问题.
(2)由题意可得点E的坐标为(0,h),点F的坐标为( ,h),根据S△AEF=OEFE=h=﹣(h﹣3)2+.利用二次函数的性质即可解决问题.
(3)存在.分两种情形情形,分别列出方程即可解决问题.
解:如图:
(1)∵抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0),
∴,
解得:.
∴抛物线的解析式为y=﹣x2﹣x+6.
(2)∵把x=0代入y=﹣x2﹣x+6,得y=6,
∴点C的坐标为(0,6),
设经过点A和点C的直线的解析式为y=mx+n,则,
解得 ,
∴经过点A和点C的直线的解析式为:y=2x+6,
∵点E在直线y=h上,
∴点E的坐标为(0,h),
∴OE=h,
∵点F在直线y=h/span>上,
∴点F的纵坐标为h,
把y=h代入y=2x+6,得h=2x+6,
解得x=,
∴点F的坐标为( ,h),
∴EF=.
∴S△AEF=OEFE=h=﹣(h﹣3)2+,
∵﹣<0且0<h<6,
∴当h=3时,△AEF的面积最大,最大面积是 .
(3)存在符合题意的直线y=h.
∵B(2,0),C(0,6),
∴直线BC的解析式为y=﹣3x+6,设D(m,﹣3m+6).
①当BM=BD时,(m﹣2)2+(﹣3m+6)2=42,
解得m=或(舍弃),
∴D(,),此时h=.
②当MD=BM时,(m+2)2+(﹣3m+6)2=42,
解得m=或2(舍弃),
∴D(,),此时h=.
∵综上所述,存在这样的直线y=或y=,使△BDM是等腰三角形,当h=时,点D的坐标为(,);当h=时,点D的坐标为(,).
【题目】某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.
行李的重量xkg | 快递费 |
不超过1kg | 10元 |
超过1kg但不超过5kg的部分 | 3元/kg |
超过5kg但不超过15kg的部分 | 5元/kg |
(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?
(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;
(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?