题目内容
【题目】如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.
(1)求证:DE=CE.
(2)若∠CDE=25°,求∠A 的度数.
【答案】(1)证明见解析;(2)80°
【解析】
(1)根据角平分线的性质可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,进而可得出∠EDC=∠ECD,再利用等角对等边即可证出DE=CE;
(2)由(1)可得出∠ECD=∠EDC=25°,进而可得出∠ACB=2∠ECD=50°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A的度数.
(1)证明:∵CD 是∠ACB 的平分线,∴∠BCD=∠ECD.
∵DE∥BC,
∴∠EDC=∠BCD,
∴∠EDC=∠ECD,
∴DE=CE
(2)解:∵∠ECD=∠EDC=25°,∴∠ACB=2∠ECD=50°.
∵AB=AC,
∴∠ABC=∠ACB=50°,
∴∠A=180°﹣50°﹣50°=80°
练习册系列答案
相关题目