题目内容
【题目】已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点
(1)求证:△ABM≌△DCM
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB= _时,四边形MENF是正方形(只写结论,不需证明)
【答案】解:(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC。
又∵MA=MD,∴△ABM≌△DCM(SAS)。
(2)四边形MENF是菱形。证明如下:
∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=CM,MF=CM。
∴NE=FM,NE∥FM。∴四边形MENF是平行四边形。
∵△ABM≌△DCM,∴BM=CM。
∵E、F分别是BM、CM的中点,∴ME=MF。
∴平行四边形MENF是菱形。
(3)2:1
【解析】
试题(1)求出AB=DC,∠A=∠D=90°,AM=DM,根据全等三角形的判定定理推出即可。
(2)根据三角形中位线定理求出NE∥MF,NE=MF,得出平行四边形,求出BM=CM,推出ME=MF,根据菱形的判定推出即可。
(3)当AD:AB=2:1时,四边形MENF是正方形,理由如下:
∵M为AD中点,∴AD=2AM。
∵AD:AB=2:1,∴AM=AB。
∵∠A=90°,∴∠ABM=∠AMB=45°。
同理∠DMC=45°。
∴∠EMF=180°-45°-45°=90°。
∵四边形MENF是菱形,∴菱形MENF是正方形。
练习册系列答案
相关题目