题目内容
【题目】对于一个矩形ABCD及⊙M给出如下定义:在同一平面内,如果矩形ABCD的四个顶点到⊙M上一点的距离相等,那么称这个矩形ABCD是⊙M的“伴侣矩形”.如图,在平面直角坐标系xOy中,直线l:交x轴于点M,⊙M的半径为2,矩形ABCD沿直线运动(BD在直线l上),BD=2,AB∥y轴,当矩形ABCD是⊙M的“伴侣矩形”时,点C的坐标为 .
【答案】(,)或(,).
【解析】
试题分析:如图所示,矩形在这两个位置时就是⊙M的“伴侣矩形”,根据直线l:得:OM=,ON=3,由勾股定理得:MN==;
①矩形在x轴下方时,分别过A、D作两轴的垂线AH、DG,由cos∠ABD=cos∠ONM=,∴,AB=,则AD=1,∵DG∥y轴,∴△MDG∽△MON,∴,∴,∴DG=,∴CG=+=,同理可得:,∴,∴DH=,∴C(,);
②矩形在x轴上方时,同理可得:C(,);
故答案为:(,)或(,).
练习册系列答案
相关题目