题目内容

【题目】如图,在正方形ABCD中,将正方形的边AD绕点A顺时针旋转到AE,连接BE、DE,过点A作AF⊥BE于F,交直线DE于P.

(1)如图①,若∠DAE=40°,求∠P的度数;
(2)如图②,若90°<∠DAE<180°,其它条件不变,试探究线段AP、DP、EP之间的数量关系,并说明理由;
(3)继续旋转线段AD,若旋转角180°<∠DAE<270°,则线段AP、DP、EP之间的数量关系为(直接写出结果)

【答案】
(1)

解:∵四边形ABCD是正方形,

∴AD=AB,∠BAD=90°,

∵AD绕点A顺时针旋转到AE,

∴AD=AE,

∵∠DAE=40°,

∴∠ADE=∠AED=70°,∠BAE=50°,

∵AF⊥BE,

∴∠FAE=∠FAB=25°,

∴∠P=∠AED﹣∠PAE=45°;


(2)

解:如图2,过A作AQ⊥DE于Q,

则∠PAQ=∠BAQ+∠FAB,

∵AE=AB,AF⊥BE,

∴∠FAE=∠BAF,

∴∠APQ=∠EAF+∠AEP,

∵∠BAD=∠AQP=90°,

∴∠BAQ=∠ADQ,

∵AE=AD,

∴∠ADQ=∠AEP,

∴∠BAQ=∠AEP,

∴∠APQ=∠PAQ=45°,

∴PQ= AP,

∴PE+PQ=PD﹣PQ,

即PE+ AP=PD﹣ AP,

∴PD= AP+PE;


(3)PE=PD+ PA
【解析】解:(3)如图3,过A作AQ⊥DE于Q,则∠AQP=90°,
∵AD=AE,
∴DQ=EQ,∠AEQ=∠ADQ,
∵AE=AB,AF⊥BE,
∴∠3=∠FAB,
∵∠APQ=∠3﹣∠AEQ=∠3﹣∠ADQ,
∵∠1+∠FAB=∠FAB+∠ABF=90°,
∴∠1=∠ABF=∠AEF,
∴∠2=90°﹣∠1﹣∠ADP=90°﹣(90°﹣∠3)﹣∠AEP=∠3﹣∠AEP,
∴∠2=∠APQ=45°,
∴PQ= AP,
∴PD+PQ=PE﹣PQ,
即PD+ PA=PE﹣ PA,
∴PE=PD+ PA.
所以答案是:PE=PD+ PA.

【考点精析】通过灵活运用等腰三角形的性质,掌握等腰三角形的两个底角相等(简称:等边对等角)即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网