题目内容

【题目】如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.
(1)求证:NQ⊥PQ;
(2)若⊙O的半径R=2,NP= ,求NQ的长.

【答案】
(1)证明:连结OP,如图,

∴直线PQ与⊙O相切,

∴OP⊥PQ,

∵OP=ON,

∴∠ONP=∠OPN,

∵NP平分∠MNQ,

∴∠ONP=∠QNP,

∴∠OPN=∠QNP,

∴OP∥NQ,

∴NQ⊥PQ


(2)解:连结PM,如图,

∵MN是⊙O的直径,

∴∠MPN=90°,

∵NQ⊥PQ,

∴∠PQN=90°,

而∠MNP=∠QNP,

∴Rt△NMP∽Rt△NPQ,

= ,即 =

∴NQ=3.


【解析】(1)连结OP,根据切线的性质由直线PQ与⊙O相切得OP⊥PQ,再由OP=ON得到∠ONP=∠OPN,由NP平分∠MNQ得到∠ONP=∠QNP,利用等量代换得∠OPN=∠QNP,根据平行线的判定得OP∥NQ,所以NQ⊥PQ;(2)连结PM,根据圆周角定理由MN是⊙O的直径得到∠MPN=90°,易证得Rt△NMP∽Rt△NPQ,然后利用相似比可计算出NQ的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网