题目内容
【题目】如图所示,在矩形ABCD中,AB= ,BC=2,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是( )
A.
B.
C.1
D.1.5
【答案】D
【解析】解:∵AB= ,BC=2, ∴AC= ,
∴AO= AC= ,
∵EO⊥AC,
∴∠AOE=∠ADC=90°,
又∵∠EAO=∠CAD,
∴△AEO∽△ACD,
∴ ,
即 ,
解得AE=1.5.
故选D.
【考点精析】认真审题,首先需要了解线段垂直平分线的性质(垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等),还要掌握勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2)的相关知识才是答题的关键.
练习册系列答案
相关题目
【题目】某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:
第1个 | 第2个 | 第3个 | 第4个 | … | 第n个 | |
调整前的单价x(元) | x1 | x2=6 | x3=72 | x4 | … | xn |
调整后的单价y(元) | y1 | y2=4 | y3=59 | y4 | … | yn |
已知这n个玩具调整后的单价都大于2元.
(1)求y与x的函数关系式,并确定x的取值范围;
(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?
(3)这n个玩具调整前、后的平均单价分别为 , ,猜想 与 的关系式,并写出推导过程.