题目内容

(本题满分12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙OAB边交于点D,过点D作⊙O的切线,交BC于点E.

小题1:(1)求证:点E是边BC的中点;(4分)
小题2:(2)若EC=3,BD=,求⊙O的直径AC的长度;(4分)
小题3:(3)若以点ODEC为顶点的四边形是正方形,试判断△ABC的形状,并说明理由. (4分)

小题1:(1)证明:连接DO

∵∠ACB=90°,AC为直径, ∴EC为⊙O的切线,
又∵ED也为⊙O的切线, ∴EC=ED.    (2分)
又∵∠EDO=90°, ∴∠BDE+∠ADO=90°,
∴∠BDE+∠A=90°,
又∵∠B+∠A=90° ∴∠BDE=∠B, ∴EB=ED.
EB=EC,即点E是边BC的中点.   
小题2:(2)∵BCBA分别是⊙O的切线和割线,
BC2=BD·BA, ∴(2EC2= BD·BA,即BA·=36,∴BA=,   (6分)
在Rt△ABC中,由勾股定理得 AC===.
小题3:(3)△ABC是等腰直角三角形.   (9分)
理由:∵四边形ODEC为正方形, ∴∠DOC=∠ACB=90°,即DOBC
又∵点E是边BC的中点, ∴BC=2OD=AC
∴△ABC是等腰直角三角形.     (12分)
(1)利用EC为⊙O的切线,ED也为⊙O的切线可求EC=ED,再求得EB=EC,EB=ED可知点E是边BC的中点;
(2)解答此题需要运用圆切线和割线的性质和勾股定理求解;
(3)判定△ABC是等腰直角三角形时要用到正方形的性质来求得相等的边.
(1)证明:连接DO;

∵∠ACB=90°,AC为直径,
∴EC为⊙O的切线;
又∵ED也为⊙O的切线,
∴EC=ED,
又∵∠EDO=90°,
∴∠BDE+∠ADO=90°,
∴∠BDE+∠A=90°
又∵∠B+∠A=90°,
∴∠BDE=∠B,
∴EB=ED,
∴EB=EC,即点E是边BC的中点;
(2)解:∵BC,BA分别是⊙O的切线和割线,
∴BC2=BD?BA,
∴(2EC)2=BD?BA,即BA?2=36,
∴BA=3
在Rt△ABC中,由勾股定理得
AC===
(3)解:△ABC是等腰直角三角形.
理由:∵四边形ODEC为正方形,
∴∠DOC=∠ACB=90°,即DO∥BC,
又∵点E是边BC的中点,
∴BC=2OD=AC,
∴△ABC是等腰直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网