题目内容

如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.
(1)∵OA⊥OB,OA:OB=4:3,⊙D的半径为2
∴⊙C过原点,OC=4,AB=8
A点坐标为(
32
5
,0)B点坐标为(0,
24
5

∴⊙C的圆心C的坐标为(
16
5
12
5
)(3分)

(2)由EF是⊙D的切线,
∴OC⊥EF
∵CO=CA=CB
∴∠COA=∠CAO,∠COB=∠CBO
∴Rt△AOBRt△OCERt△FCO
OE
AB
=
OC
OA
OF
AB
=
OC
OB

∴OE=5,OF=
20
3

∴E点坐标为(5,0),F点坐标(0,
20
3

∴切线EF的解析式为y=-
4
3
x+
20
3
;(7分)

(3)①当抛物线开口向下时,由题意,得
抛物线顶点坐标为(
16
5
12
5
+4),
可得:-
b
2a
=
16
5
4ac-b2
4a
=
32
5
,c=
24
5

∴a=-
5
32
,b=1,c=
24
5

∴y=-
5
32
x2+x+
24
5
;(10分)
②当抛物线开口向上时,
顶点坐标为(
16
5
12
5
-4),
可得:-
b
2a
=
16
5
4ac-b2
4a
=-
8
5
,c=
24
5

∴y=
5
8
x2-4x+
24
5

综上所述,抛物线解析式为:
y=-
5
32
x2+x+
24
5
或y=
5
8
x2-4x+
24
5
.(12分)
注:其他解法参照以上评分标准评分
练习册系列答案
相关题目
唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
作法如下:如(1)图,从B出发向河岸引垂线,垂足为D,在AP的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如(2)图,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为______.

(2)实践运用
如(3)图,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.

(3)拓展迁移
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网