题目内容

【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有(  )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】根据抛物线的顶点坐标(﹣2,﹣9a),根据顶点坐标公式可求得b=4a,c=-5a,从而可得抛物线的解析式为y=ax2+4ax﹣5a,然后根据二次函数的性质一一判断即可.

a>0,

∵抛物线的顶点坐标(﹣2,﹣9a),

=﹣2,=﹣9a,

b=4a,c=-5a,

∴抛物线的解析式为y=ax2+4ax﹣5a,

4a+2b+c=4a+8a﹣5a=7a>0,故①正确,

5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②错误,

∵抛物线y=ax2+4ax﹣5ax轴于(﹣5,0),(1,0),

∴若方程a(x+5)(x﹣1)=﹣1有两个根x1x2,且x1<x2,则﹣5<x1<x2<1,正确,故③正确,

若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,故④错误,

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网