题目内容
【题目】如图,△ABC、△BDE都是等腰直角三角形,∠ABC=∠DBE=90°,连接AE、CD交于点F,连接BF.求证:
(1)AE=CD;
(2)BF平分∠AFD.
【答案】(1)证明见解析(2)证明见解析
【解析】
(1)由等腰直角三角形的性质可得AB=BC,BE=BD,∠ABC=∠DBE,由“SAS”可证△ABE≌△CBD,可得AE=CD;
(2)由全等三角形的性质可得S△ABE=S△CBD,可求BM=BN,由角平分线的性质可证BF平分∠AFD.
证明:(1)∵△ABC、△BDE都是等腰直角三角形
∴AB=BC,BE=BD,∠ABC=∠DBE
∴∠ABE=∠CBD,且AB=BC,BE=BD,
∴△ABE≌△CBD(SAS)
∴AE=CD;
(2)如图,过点B作BM⊥AE于M,BN⊥CD于N,
∵△ABE≌△CBD
∴S△ABE=S△CBD,
∴AE×BM=CD×BN
∴BM=BN,且BM⊥AE,BN⊥CD
∴BF平分∠AFD.
练习册系列答案
相关题目