题目内容
【题目】如图,矩形ABCD中,DE⊥AC于点E,∠EDC:∠EDA=1:3,且AC=12,则DE的长度是 (结果用根号表示).
【答案】
【解析】解:连接BD交AC于O,
∵四边形ABCD是矩形,
∴∠ADC=90°,AC=BD=12,OA=OC=AC=6,OB=OD=BD=6,
∴OC=OD,
∴∠ODC=∠OCD,
∵∠EDC:∠EDA=1:3,∠EDC+∠EDA=90°,
∴∠EDC=22.5°,∠EDA=67.5°,
∵DE⊥AC,
∴∠DEC=90°,
∴∠DCE=90°﹣∠EDC=67.5°,
∴∠ODC=∠OCD=67.5°,
∴∠ODC+∠OCD+∠DOC=180°,
∴∠COD=45°,
∴OE=DE,
∵OE2+DE2=OD2 ,
∴2(DE)2=OD2=36,
∴DE= ,
故答案为: .
根据∠EDC:∠EDA=1:3,可得△CDE∽△ADE,再由AC=10,求得DE.
练习册系列答案
相关题目