题目内容
【题目】如图,四边形ABCD为矩形,AB=4cm,AD=3cm,动点M、N分别从D、B同时出发,都以1cm/秒的速度运动,点M沿DA向点终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于点P,连接MP,已知运动的时间为t秒(0<t<3).
(1)当t=1秒时,求出PN的长;
(2)若四边形CDMP的面积为s,试求s与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t使四边形CDMP的面积与四边形ABCD的面积比为3:8,若存在,请求出t的值;若不存在,请说明理由.
(4)在点M、N运动过程中,△MPA能否成为一个等腰三角形?若能,试求出所有t的可能值;若不能,试说明理由.
【答案】(1);(2);(3)存在,;(4)能,当t=1或t= 或t=时,△MPA是等腰三角形.
【解析】
(1)由t=1知BN=1、CN=BC﹣BN=2,证△PNC∽△ABC得,据此可得答案;
(2)延长NP交AD于点Q,则PQ⊥AD,由△PNC∽△ABC得,据此得出PN=4﹣t、PQ=t,根据S四边形CDMP=S△ACD﹣S△AMP可得;
(3)求出矩形ABCD的面积,然后由题意可得关于t的方程,解方程即可求得答案;
(4)本题要分三种情况:①MP=PA,那么AQ=BN=AM,可用x分别表示出BN和AM的长,然后根据上述等量关系可求得x的值.②MA=MP,在直角三角形MQP中,MQ=MA﹣BN,PQ=AB﹣PN根据勾股定理即可求出x的值.③MA=PA,不难得出AP=BN,然后用x表示出AM的长,即可求出x的值.
(1)当t=1时,BN=1、CN=BC﹣BN=2,
∵PN⊥BC,
∴∠PNC=∠B=90°,
∴PN∥AB,
∴△PNC∽△ABC,
∴,即,
∴PN=;
(2)如图,延长NP交AD于点Q,则PQ⊥AD,
由题意知,DM=BN=t,AM=CN=3﹣t,
∵PN∥AB,
∴△PNC∽△ABC,
∴,即,
解得:PN=(3﹣t)=4﹣t,
∵PQ⊥AD,
∴∠QAB=∠B=∠NQA=90°,
∴四边形ABNQ是矩形,
则AB=QN=4,
∴PQ=QN﹣PN=4﹣(4﹣t)=t,
∴四边形CDMP的面积s=×3×4﹣×(3﹣t)×t=t2﹣2t+6;
(3)∵S矩形ABCD=3×4=12,
∴,
解得:t=,
所以t=时四边形CDMP的面积与四边形ABCD的面积比为3:8;
(4)△MPA能成为等腰三角形,共有三种情况,以下分类说明:
①若PM=PA,
∵PQ⊥MA,
∴四边形ABNQ是矩形,
∴QA=NB=t,
∴MQ=QA=t,
又∵DM+MQ+QA=AD
∴3t=3,即t=1
②若MP=MA,则MQ=3﹣2t,PQ=t,MP=MA=3﹣t,
在Rt△PMQ中,由勾股定理得:MP2=MQ2+PQ2
∴(3﹣t)2=(3﹣2t)2+(t)2,
解得:t=(t=0不合题意,舍去);
③若AP=AM,
由题意可得:AP=t,AM=3﹣t
∴t=3﹣t,
解得:t=,
综上所述,当t=1或t=或t=时,△MPA是等腰三角形.