题目内容
【题目】如图,将△ABC绕顶点C逆时针旋转得到△A′B′C,且点B刚好落在A′B′上.若∠A=25°,∠BCA′=45°,则∠A′BA=___________度
【答案】40
【解析】
由旋转的性质可得:∠A′=∠A=25°,∠B′=∠ABC,CB=C B′,根据等边对等角可得:∠B′=∠B′BC,根据三角形外角的性质可得:∠B′BC=∠BCA′+∠A′=70°,从而求出∠B′BC和∠ABC,即可求出∠A′BA.
解:由旋转的性质可得:∠A′=∠A=25°,∠B′=∠ABC,CB=C B′
∴∠B′=∠B′BC
∵∠BCA′=45°,
∴∠B′BC=∠BCA′+∠A′=70°
∴∠ABC=∠B′=∠B′BC=70°
∴∠A′BA=180°-∠B′BC-∠ABC=40°
故答案为:40
练习册系列答案
相关题目
【题目】我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:,每件产品的利润z(元)与月份x(月)的关系如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
z | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 10 | 10 |
(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;
(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;
(3)当x为何值时,月利润w有最大值,最大值为多少?
【题目】二次函数(,,为常数且)中的与的部分对应值如下表:
-1 | 0 | 1 | 3 | |
-1 | 3 | 5 | 3 |
给出了结论:
(1)二次函数有最大值,最大值为5;(2);(3)时,的值随值的增大而减小;(4)3是方程的一个根;(5)当时,.则其中正确结论的个数是( )
A.4B.3C.2D.1