题目内容
【题目】我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:,每件产品的利润z(元)与月份x(月)的关系如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
z | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 10 | 10 |
(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;
(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;
(3)当x为何值时,月利润w有最大值,最大值为多少?
【答案】(1);(2);(3)x=8时,w有最大值144万元.
【解析】(1)根据表格中的数据可以求得各段对应的函数解析式,本题得以解决;
(2)根据题目中的解析式和(1)中的解析式可以解答本题;
(3)根据(2)中的解析式可以求得各段的最大值,从而可以解答本题.
详解;(1)当1≤x≤9时,设每件产品利润z(元)与月份x(月)的关系式为z=kx+b,
,得,
即当1≤x≤9时,每件产品利润z(元)与月份x(月)的关系式为z=-x+20,
当10≤x≤12时,z=10,
由上可得,z=;
(2)当1≤x≤8时,w=(-x+20)(x+4)=-x2+16x+80
当9≤x≤10时,w=(-x+20)(-x+20)=x2-40x+400;
当11≤x≤12时,w=10(-x+20)=-10x+200;
∴w与x的关系式为: ;
(3)当1≤x≤8时,w=-x2+16x+80=-(x-8)2+144,
∴当x=8时,w取得最大值,此时w=144;
当x=9时,w=121,
当10≤x≤12时,w=-10x+200,
则当x=10时,w取得最大值,此时w=100,
由上可得,当x为8时,月利润w有最大值,最大值144万元.
练习册系列答案
相关题目