题目内容
【题目】如图,△ABC是⊙O的内接三角形.AE是⊙O的直径,交BC于点G.过点A作AF⊥BC,AF分别与BC、⊙O交于点D、F,连接BE、CF.
(1)求证:∠BAE=∠CAF;
(2)若AB=8,AC=6,AG=5,求AF的长.
【答案】(1)详见解析;(2)
【解析】
(1)由圆周角定理得出∠ABE=90°,得出∠BAE+∠BEA=90°,由AF⊥BC得出∠ACD+∠CAF =90°,由圆周角定理得出∠BEA=∠ACD,即可得出结论;
(2)先证明∠ABC=∠AFC,∠BAE=∠CAF得△ABG∽△AFC,得到即可得到答案.
解(1)∵AE是⊙O的直径,
∴∠ABE=90°,
∴∠BAE+∠BEA=90°,
∵AF⊥BC,
∴∠ADC=90°,
∴∠ACD+∠CAF =90°,
又∵∠BEA=∠ACD,
∴∠BAE=∠CAF;
(2)∵∠ABC与∠AFC是的圆周角
∴∠ABC=∠AFC
∵∠BAE=∠CAF
∴△ABG∽△AFC
∴
∵AB=8,AC=6,AG=5
∴ 得
练习册系列答案
相关题目
【题目】某单位计划购进三种型号的礼品共件,其中型号礼品件,型号礼品比型号礼品多件.已知三种型号礼品的单价如下表:
型号 | |||
单价(元/件) |
(1)求计划购进和两种型号礼品分别多少件?
(2)实际购买时,厂家给予打折优惠销售(如: 折指原价,在计划总价额不变的情况下,准备购进这批礼品.
①若只购进两种型号礼品,且型礼品件数不超过型礼品的倍,求型礼品最多购进多少件?
②若只购进两种型号礼品,它们的单价分别打折、折,均为整数,且购进的礼品总数比计划多件,求的值.