题目内容
【题目】如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是________.
【答案】0或1<AF< 或4
【解析】
学习了圆周角的推论: 直径所对的圆周角是直角, 可提供解题思路, 可以以EF为直径作圆, 以边界值去讨论该圆与矩形ABCD交点的个数.
解:以EF为斜边的直角三角形的直角顶点P是以EF为直径的圆与矩形边的交点, 取EF的中点O,
(1) 如图1, 当圆O与AD相切于点G时, 连结OG, 此时点G与点P重合,只有一个点, 此时AF=OG=DE=1;
(2) 如图2,
当圆O与BC相切于点G, 连结OG,EG, FG, 此时有三个点P可以构成Rt△EFP,
OG是圆O的切线,OG⊥BC
OG∥AB∥CD
OE=OF,
BG=CG,OG=(BF+CE),
设AF=x, 则BF=4-x, OG= (4-x+4-1)= (7-x)
则EF=20G=7-x, EG=EC+CG=9+1=10,FG=BG+BF=1+(4-x),
在Rt△EFG中, 由勾股定理得EF=EG+FG ,
得(7-x)=10+1+(4-x)2,解得x=,
所以当1<AF<时,以EF为直径的圆与矩形ABCD的交点 (除了点E和F) 只有两个;
(3)因为点F是边AB上一动点:
当点F与A点重合时, AF=4, 此时Rt△EFP正好有两个符合题意;
故答案为0或1<AF< 或4.
【题目】某陶瓷公司招工广告称:“本公司工人工作时间:每天工作小时,每月工作天;待遇:工人按计件付工资,每月另加生活费元,按月结算…”.该公司只生产甲、乙两种陶瓷,工人小王记录了如下一些数据:
甲种陶瓷 (单位:个) | 乙种陶瓷 (单位:个) | 总时间 (单位:分钟) | 计件工资 (单位:元) |
(1)设生产每个甲种陶瓷所需的时间为分钟,用含有的代数式表示生产每个乙种陶瓷所需的时间;
(2)设小王工人小王某月(工作天)生产甲种陶瓷个,乙种陶瓷个,
①试求与的函数关系式;(不需写出自变量的取值范围)
②根据市场调查,每个工人每月生产甲种陶瓷的数量不少于乙种陶瓷数量的倍,且生产每个乙种陶瓷的计件工资可提高元,甲种陶瓷计件工资也有提高的空间.若小王的工作效率不变,甲种陶瓷计件工资至少要提高多少元,小王的月工资(计件工资+福利工资月工资)才能领到元?