题目内容

【题目】已知关于x的方程x2﹣(m+2)x+2m﹣1=0.
(1)求证:此方程有两个不相等的实数根;
(2)若抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴有两个交点都在x轴正半轴上,求m的取值范围;
(3)填空:若x2﹣(m+2)x+2m﹣1=0的两根都大于1,则m的取值范围是

【答案】
(1)证明:∵△=[﹣(m+2)]2﹣4(2m﹣1)=m2+4m+4﹣8m+4=m2﹣4m+8=(m﹣2)2+4,

∵(m﹣2)2≥0,

∴(m﹣2)2+4>0,

∴无论m取何实数时,此方程都有两个不相等的实数根


(2)解:设抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴两个交点的横坐标是x1,x2

则x1+x2=m+2,x1x2=2m﹣1.

根据题意,得

解得m>

即m的取值范围是m>


(3)m>2
【解析】(3)解:设x2﹣(m+2)x+2m﹣1=0的两根是x1 , x2 , 则x1+x2=m+2,x1x2=2m﹣1.
根据题意,得
解得m>2.
所以答案是m>2.
【考点精析】本题主要考查了二次函数的性质和抛物线与坐标轴的交点的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网