题目内容

【题目】如图,△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC边的中点,连接DH,交BE于点G.

(1)求证:△ADC≌△FDB;

(2)求证:CE=BF;

(3)连结CG,判断△ECG的形状,并说明理由.

【答案】(1)证明见解析 (2)证明见解析 (3)证明见解析

【解析】

(1)首先根据AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,进一步得到∠ACD=∠DBF,结合CD=BD,即可证明出△ADC≌△FDB;(2)由△ADC≌△FDB得到AC=BF,结合CE=AE,即可证明出结论;(3)由点HBC边的中点,得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,结合BE⊥AC,即可判断出△ECG的形状;

证明:(1)∵AB=BC,BE平分∠ABC,

∴BE⊥AC,CE=AE

∵CD⊥AB,

∴∠ACD=∠DBF,

在△ADC和△FDB中,

∴△ADC≌△FDB(ASA);

(2)∵△ADC≌△FDB,

∴AC=BF,

又∵CE=AE,

∴CE=BF;

(3)△ECG为等腰直角三角形.

∵点H是BC边的中点,

∴GH垂直平分BC,

∴GC=GB,

∵∠DBF=∠GBC=∠GCB=∠ECF,

∵DB=DC,∠BDC=90°,

∴∠ECG=∠DCB=45°,

又∵BE⊥AC,

∴△ECG为等腰直角三角形;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网